Maximum-likelihood blind deconvolution: non-white Bernoulli-Gaussian case

نویسندگان

  • Chang-Yung Chi
  • Wu-Tan Chen
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Marginal Likelihood for Gaussian mixtures

The dominant approach in Bernoulli-Gaussian myopic deconvolution consists in the joint maximization of a single Generalized Likelihood with respect to the input signal and the hyperparameters. The aim of this correspondence is to assess the theoretical properties of a related Generalized Marginal Likelihood criterion in a simpliied framework where the lter is reduced to identity. Then the outpu...

متن کامل

An alternative to standard maximum likelihood for Gaussian mixtures

Because true Maximum Likelihood (ML) is too expensive, the dominant approach in Bernoulli-Gaussian (BG) myopic deconvolution consists in the joint maximization of a single Generalized Likelihood with respect to the input signal and the hyperparameters. This communication assesses the theoretical properties of a related Maximum Generalized Marginal Likelihood (MGML) estimator in a simplified fra...

متن کامل

Parametric Blind Deconvolution of Microscopic Images: Further Results

Blind deconvolution microscopy, the simultaneous estimation of the specimen function and the point spread function (PSF) of the microscope is an under-determined problem with non-unique solutions. The non-uniqueness is commonly avoided by enforcing constraints on both the specimen function and the PSF, such as non-negativity and band limitation. These constraints are some times enforced in ad h...

متن کامل

Quasi maximum likelihood blind deconvolution: super- and sub-Gaussianity vs. asymptotic stability

In this note we consider the problem of quasi maximum likelihood (QML) blind deconvolution. We examine two classes of estimators, which are commonly believed to be suitable for superand sub-Gaussian sources. We state the asymptotic stability conditions and demonstrate a distribution, for which the studied estimators result unsuitable, in the sense that they are asymptotically unstable.

متن کامل

Probabilistic Formulation of Independent Vector Analysis Using Complex Gaussian Scale Mixtures

We propose a probabilistic model for the Independent Vector Analysis approach to blind deconvolution and derive an asymptotic Newton method to estimate the model by Maximum Likelihood.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 29  شماره 

صفحات  -

تاریخ انتشار 1991