Maximum-likelihood blind deconvolution: non-white Bernoulli-Gaussian case
نویسندگان
چکیده
منابع مشابه
Generalized Marginal Likelihood for Gaussian mixtures
The dominant approach in Bernoulli-Gaussian myopic deconvolution consists in the joint maximization of a single Generalized Likelihood with respect to the input signal and the hyperparameters. The aim of this correspondence is to assess the theoretical properties of a related Generalized Marginal Likelihood criterion in a simpliied framework where the lter is reduced to identity. Then the outpu...
متن کاملAn alternative to standard maximum likelihood for Gaussian mixtures
Because true Maximum Likelihood (ML) is too expensive, the dominant approach in Bernoulli-Gaussian (BG) myopic deconvolution consists in the joint maximization of a single Generalized Likelihood with respect to the input signal and the hyperparameters. This communication assesses the theoretical properties of a related Maximum Generalized Marginal Likelihood (MGML) estimator in a simplified fra...
متن کاملParametric Blind Deconvolution of Microscopic Images: Further Results
Blind deconvolution microscopy, the simultaneous estimation of the specimen function and the point spread function (PSF) of the microscope is an under-determined problem with non-unique solutions. The non-uniqueness is commonly avoided by enforcing constraints on both the specimen function and the PSF, such as non-negativity and band limitation. These constraints are some times enforced in ad h...
متن کاملQuasi maximum likelihood blind deconvolution: super- and sub-Gaussianity vs. asymptotic stability
In this note we consider the problem of quasi maximum likelihood (QML) blind deconvolution. We examine two classes of estimators, which are commonly believed to be suitable for superand sub-Gaussian sources. We state the asymptotic stability conditions and demonstrate a distribution, for which the studied estimators result unsuitable, in the sense that they are asymptotically unstable.
متن کاملProbabilistic Formulation of Independent Vector Analysis Using Complex Gaussian Scale Mixtures
We propose a probabilistic model for the Independent Vector Analysis approach to blind deconvolution and derive an asymptotic Newton method to estimate the model by Maximum Likelihood.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 29 شماره
صفحات -
تاریخ انتشار 1991